Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Bioactive Materials ; 20:449-462, 2023.
Article in English | Scopus | ID: covidwho-2246587

ABSTRACT

The recent remarkable success and safety of mRNA lipid nanoparticle technology for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has stimulated intensive efforts to expand nanoparticle strategies to treat various diseases. Numerous synthetic nanoparticles have been developed for pharmaceutical delivery and cancer treatment. However, only a limited number of nanotherapies have enter clinical trials or are clinically approved. Systemically administered nanotherapies are likely to be sequestered by host mononuclear phagocyte system (MPS), resulting in suboptimal pharmacokinetics and insufficient drug concentrations in tumors. Bioinspired drug-delivery formulations have emerged as an alternative approach to evade the MPS and show potential to improve drug therapeutic efficacy. Here we developed a biodegradable polymer-conjugated camptothecin prodrug encapsulated in the plasma membrane of lipopolysaccharide-stimulated macrophages. Polymer conjugation revived the parent camptothecin agent (e.g., 7-ethyl-10-hydroxy-camptothecin), enabling lipid nanoparticle encapsulation. Furthermore, macrophage membrane cloaking transformed the nonadhesive lipid nanoparticles into bioadhesive nanocamptothecin, increasing the cellular uptake and tumor-tropic effects of this biomimetic therapy. When tested in a preclinical murine model of breast cancer, macrophage-camouflaged nanocamptothecin exhibited a higher level of tumor accumulation than uncoated nanoparticles. Furthermore, intravenous administration of the therapy effectively suppressed tumor growth and the metastatic burden without causing systematic toxicity. Our study describes a combinatorial strategy that uses polymeric prodrug design and cell membrane cloaking to achieve therapeutics with high efficacy and low toxicity. This approach might also be generally applicable to formulate other therapeutic candidates that are not compatible or miscible with biomimetic delivery carriers. © 2022 The Authors

2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066129

ABSTRACT

Topoisomerases are essential enzymes that recognize and modify the topology of DNA to allow DNA replication and transcription to take place. Topoisomerases are divided into type I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave positively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils (or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemotherapy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or by conventional Watson-Crick base pairing (WC-OTIs). This converts compounds from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific gene editing agents for DNA lesions that cause neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Oligonucleotides , DNA/metabolism , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , DNA, Superhelical , Humans , Imidazoles , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Nylons , Oligonucleotides/chemistry , Pyrroles , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors , Topoisomerase Inhibitors/pharmacology , Topoisomerase Inhibitors/therapeutic use
3.
J King Saud Univ Sci ; 33(2): 101344, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1386058

ABSTRACT

Camptothetin (CPT) is a quinoline alkaloid originally isolated from the Chinese tree, Camptotheca acuminata Decne. CPT was found to have anticancerous and antiviral properties. Derivatives of natural CPT, including topothecan and irinotecan are used clinically to treat a variety of cancers. Apart from Camptotheca acuminata Decne, CPT production was also found in the perennial plant Ophiorrhiza mungos. In this study we attempted the immobilization of the tissue culture grown callus of Ophiorrhiza mungos for the continuous production of a higher concentration of CPT. As evident from previous studies about the antiviral effects of CPT, we wanted to bioinformatically analyze the binding potential of CPT towards two important proteins of SARS-CoV-2, protease (Mpro) and RNA dependent RNA polymerase (RdRp). Further docking analysis of the CPT against the exterior spike glycoprotein of SARS-CoV-2 was also done to determine their potential interaction. The immobilized callus of Ophiorrhiza mungos produced CPT at a concentration of 420 µg/l by the end of 12 days of growth. The HPLC analysis was done to determine the purity of the CPT synthesized by the immobilization technique. The bioinformatic analysis revealed a higher binding efficiency of CPT and its derivatives, toptecan and irinotecan against Mpro and RdRp. The docking analysis of CPT against the spike glycoprotein of SARS-CoV-2 showed hydrogen bonding with the amino acids at K466 with a bond distance of 2.56A° and K355 with a bond distance of 2.40A°. This finding was of particular importance that other compounds including hydroxychloroquine sulphate, lopinavir and ivermectin could bind with the spike protein only by weak Vander wall bonds and no hydrogen bond formation was noticed. Our studies hence evaluate the efficiency of CPT against SARS-CoV-2, by potentially blocking the interaction of the spike glycoprotein with the angiotensin-converting enzyme 2 (ACE2) receptor found on host cells.

SELECTION OF CITATIONS
SEARCH DETAIL